How to do the sign test.

Step 1 - collect data (example below)

participant	Score 1	Score 2
P1	4	5
P2	8	10
P3	3	8
P4	6	2
P5	8	7
P6	9	4
P7	6	6
P8	3	8
P9	8	7
P10	9	9
P11	2	8
P12	4	6

Step 2 - Take away the second value from the first for each participant. This will leave you with a positive or negative value or 0 . although shown here, you don't need the actual value, just the sign

participant	Score 1	Score 2	Workings	difference	sign
P1	4	5	$4-5=$	-1	-
P2	8	10	$8-10=$	-2	-
P3	3	8	$3-8=$	-5	-
P4	6	2	$6-2=$	+4	+
P5	8	7	$8-7=$	+1	+
P6	9	4	$9-4=$	+5	+
P7	6	6	$6-6=$	0	0
P8	3	8	$3-8=$	-5	-
P9	8	7	$8-7=$	+1	+
P10	9	9	$9-9=$	0	0
P11	2	8	$2-8=$	-6	-
P12	4	6	$4-6=$	-2	-

Step 3 - you now need to find out how many + and -that you have
$+=4 \quad-=6$
Step 4 - the lowest value or either + or - is your calculated S score
$S=4$
Step 5 - you now have to find your critical value. First find the value of \mathbf{N}

N is the number of participants where there is a difference.
Discount all Os
$\mathrm{N}=12-2=10$ (there are 12 participants in total but only 10 of them have a sign)

Chose the level of significance for a two-tailed test at .05 and $N=10$ to get the critical value (why you do this will become clear in year 2)

Critical value $=1$

	level of significance for a two-tailed test					
	.20	.10	.05	.02	.01	
4	0					
5	0	0				
6	0	0	0			
7	1	0	0	0	0	
8	1	1	0	0	0	
9	2	1	1	0	0	
10	2	1	1	0	0	
11	2	2	1	1	0	
12	3	2	2	1	1	
13	3	3	2	1	1	

Step 6 - for a sign test, the calculated value must be less than or equal to the critical value for the result to be significant. Is this the case?

No. The calculated value of 4 is greater than the critical value of 1 , therefore we must reject the experimental hypothesis at $p=0.05$ for a two-tailed test.

Your turn. You have a non-directional hypothesis meaning it is a two-tailed test of significance (Year 2 work) and you want to support your experimental hypothesis with a 0.05 level of significance or more. In other words, you will only accept your experimental hypothesis if you are at least 95\% confident that the results are not due to chance.

Your experimental hypothesis is. There will be a difference in people's recall of one-syllable words if they take the test in the same room as they learned the words, or if they take the test in a different room to where they learned the words.

participant	Score 1 (same room)	Score 2 (diff room)	differepee	sign
P1	7	8		,
P2	5	9		\bigcirc
P3	3	5		
P4	9	9		
P5	9	6		
P6	3	7		
P7	5	5		
P8	7	8		
P9	3	7		
P10	5	8		-
P11	7	10		,-
P12	3	9		,-'
P13	5	6	-	
P14	2	3	,-'	,--
P15	7	9		
Calculated S score $=$				
$\mathrm{N}=15-\ldots=$		く--		

Step 1 - work out the difference

Step 2 - record the sign of each difference

Step 3 - take the smallest number of signs as your calculated S score

Step 4 - work out N (number of participants minus number of $0 s$)

	level of significance for a two-tailed test					
	.20	.10	.05	.02	.01	
4	0					
5	0	0				
6	0	0	0			
7	1	0	0	0		
8	1	1	0	0	0	
9	2	1	1	0	0	
10	2	1	1	0	0	
11	2	2	1	1	0	
12	3	2	2	1	1	
13	3	3	2	1	1	

Step 5 - now work out your critical value for a two-tailed test at a significance level of 0.05 with N = \qquad Critical Value = \qquad

Step 6 - your calculated value must be equal to or less than the critical value. Is this the case?

Calculated S = \qquad critical value $=$ \qquad
I can support/reject the experimental hypothesis

Step 7 - Delete the appropriate words to make your conclusion
Because the calculated value of S is less than/greater than the critical value at $p=0.05$ and $N=15 / 13$ for a two tailed test, we can be at least 95% confident that the results are not due to chance so will support/reject the experimental hypothesis: there is a/no difference in people's recall of one-syllable words if they take the test in the same room as they learned the words, or if they take the test in a different room to where they learned the words.

Further work: Do it again on this data

\mathbf{X}	4	5	3	8	6	1	3	7	2	9	8	1
\mathbf{Y}	5	5	7	9	9	3	7	9	2	5	9	2

